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(S8.1)

(i) S = C ∪ {∅} is a semialgebra on W Z.

(ii) B = σ(S) = σ(Ce).

(iii) B coincides with the Borel σ-algebra on W Z.

Proof. (i) We have that ∅ ∈ S and that S is closed under finite intersections as an
immediate consequence of Lemma 1.2.8.(ii). Furthermore,
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is a finite union of pairwise disjoint cylinders.

(ii) B is the σ-algebra generated by the set R of measurable rectangles. By (3.9), we
have that Ce ⊆ R ⊆ A(Ce), hence σ(Ce) ⊆ B = σ(R) ⊆ σ(A(Ce)) = σ(Ce). Thus,
B = σ(Ce). Since Ce ⊆ S ⊆ R, we also get that σ(S) = B.

(iii) Let B(W Z) be the Borel σ-algebra on W Z. We have to prove that B = B(W Z).
”⊆” follows from the fact that the elementary cylinders are open sets in W Z.
”⊇” The set C of cylinders is countable, since W is finite. Since C is a basis for the
product topology on W Z, any open set U of W Z is a union of sets in C, hence U is
an at most countable union of sets in C. Thus, any open set is in σ(C) = σ(S) = B.

(S8.2) Let A ∈ B.

(i) A \ Aret is wandering.

(ii) A \ Ainf = A ∩
⋃
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Proof. (i) Remark that for every n ≥ 0, T−n(A \Aret) consists of all points which are in
A at moment n, but then leave A for ever.
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where Cn := X \T−n(A⋆) for all n ≥ 1. Remark that (Cn) is an increasing sequence,
since T−1(A⋆) = A+ ⊆ A⋆. By defining D0 := C1 and Dn := Cn+1 −Cn for all n ≥ 1,

we get that D0, D1, . . . are disjoint and
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we get that
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(S8.3) Let (X,B, µ, T ) be a MPS. If A ∈ B is such that µ(A) > 0, then there exists
1 ≤ N ≤ Φ such that
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Proof. Assume that µ(A ∩ T−i(A)) = 0 for all i = 1, . . . , Φ. Then for all m > n ∈
{0, . . . , Φ}, if 1 ≤ k := m − n ≤ Φ, we have that

µ(T−n(A) ∩ T−m(A)) = µ(T−n(A ∩ T−k(A)))

= µ(A ∩ T−k(A)), as T is measure preserving
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We have got thus a contradiction.


