SNSB Summer Term 2013 Ergodic Theory and Additive Combinatorics Laurențiu Leuștean

02.07.2013

Seminar 8

(S8.1)

- (i) $\mathcal{S} = \mathcal{C} \cup \{\emptyset\}$ is a semialgebra on $W^{\mathbb{Z}}$.
- (ii) $\mathcal{B} = \sigma(\mathcal{S}) = \sigma(\mathcal{C}_e).$
- (iii) \mathcal{B} coincides with the Borel σ -algebra on $W^{\mathbb{Z}}$.
- *Proof.* (i) We have that $\emptyset \in S$ and that S is closed under finite intersections as an immediate consequence of Lemma 1.2.8.(ii). Furthermore,

$$W^{\mathbb{Z}} \setminus C_{n_1,\dots,n_t}^{w_{i_1},\dots,w_{i_t}} = \bigcup_{u_1 \neq w_{i_1}} C_{n_1}^{u_1} \cup \bigcup_{u_2 \neq w_{i_2}} C_{n_1,n_2}^{w_{i_1},u_2} \cup \dots \cup \bigcup_{u_t \neq w_{i_t}} C_{n_1,\dots,n_{t-1},n_t}^{w_{i_1},\dots,w_{i_{t-1}},u_t}$$

is a finite union of pairwise disjoint cylinders.

- (ii) \mathcal{B} is the σ -algebra generated by the set \mathcal{R} of measurable rectangles. By (3.9), we have that $\mathcal{C}_e \subseteq \mathcal{R} \subseteq \mathcal{A}(\mathcal{C}_e)$, hence $\sigma(\mathcal{C}_e) \subseteq \mathcal{B} = \sigma(\mathcal{R}) \subseteq \sigma(\mathcal{A}(\mathcal{C}_e)) = \sigma(\mathcal{C}_e)$. Thus, $\mathcal{B} = \sigma(\mathcal{C}_e)$. Since $\mathcal{C}_e \subseteq \mathcal{S} \subseteq \mathcal{R}$, we also get that $\sigma(\mathcal{S}) = \mathcal{B}$.
- (iii) Let $\mathcal{B}(W^{\mathbb{Z}})$ be the Borel σ -algebra on $W^{\mathbb{Z}}$. We have to prove that $\mathcal{B} = \mathcal{B}(W^{\mathbb{Z}})$. " \subseteq " follows from the fact that the elementary cylinders are open sets in $W^{\mathbb{Z}}$. " \supseteq " The set \mathcal{C} of cylinders is countable, since W is finite. Since \mathcal{C} is a basis for the product topology on $W^{\mathbb{Z}}$, any open set U of $W^{\mathbb{Z}}$ is a union of sets in \mathcal{C} , hence U is an at most countable union of sets in \mathcal{C} . Thus, any open set is in $\sigma(\mathcal{C}) = \sigma(\mathcal{S}) = \mathcal{B}$.

(S8.2) Let $A \in \mathcal{B}$.

(i) $A \setminus A_{ret}$ is wandering.

(ii)
$$A \setminus A_{inf} = A \cap \bigcup_{n \ge 0} T^{-n} (A \setminus A_{ret}).$$

Proof. (i) Remark that for every $n \ge 0$, $T^{-n}(A \setminus A_{ret})$ consists of all points which are in A at moment n, but then leave A for ever.

$$A \setminus A_{inf} = A \setminus \bigcap_{n \ge 1} T^{-n}(A^{\star}) = A \cap \left(X \setminus \bigcap_{n \ge 1} T^{-n}(A^{\star}) \right) = A \cap \bigcup_{n \ge 1} \left(X \setminus T^{-n}(A^{\star}) \right)$$
$$= A \cap \left[(X \setminus T^{-1}(A^{\star})) \cup \ldots \cup (X \setminus T^{-n}(A^{\star})) \cup \ldots \right] = A \cap \bigcup_{n \ge 1}^{\infty} C_n,$$

where $C_n := X \setminus T^{-n}(A^*)$ for all $n \ge 1$. Remark that (C_n) is an increasing sequence, since $T^{-1}(A^*) = A^+ \subseteq A^*$. By defining $D_0 := C_1$ and $D_n := C_{n+1} - C_n$ for all $n \ge 1$, we get that D_0, D_1, \ldots are disjoint and $\bigcup_{n\ge 1} C_n = \bigcup_{n\ge 0} D_n$. Using moreover that for all $n \ge 2$

$$n \geq 2,$$

 $D_n = C_{n+1} - C_n = (X \setminus T^{-n-1}(A^*)) \setminus (X \setminus T^{-n}(A^*)) = T^{-n}(A^*) \setminus T^{-n-1}(A^*)$

we get that

$$A \setminus A_{inf} = A \cap \left(\left(X \setminus T^{-1}(A^*) \right) \cup \bigcup_{n \ge 1} \left(T^{-n}(A^*) \setminus T^{-n-1}(A^*) \right) \right)$$
$$= \left(A \cap \left(X \setminus A^+ \right) \right) \cup \left[A \cap \bigcup_{n \ge 1} T^{-n} \left(A^* \setminus T^{-1}(A^*) \right) \right]$$
$$= \left(A \cap \left(X \setminus A^+ \right) \right) \cup \left[A \cap \bigcup_{n \ge 1} T^{-n} \left(A^* \setminus T^{-1}(A^*) \right) \right]$$
$$= \left(A \setminus A^+ \right) \cup \left[A \cap \bigcup_{n \ge 1} T^{-n}(A^* \setminus A^+) \right]$$
$$= \left(A \setminus A_{ret} \right) \cup \left[A \cap \bigcup_{n \ge 1} T^{-n}(A \setminus A_{ret}) \right]$$
$$= A \cap \bigcup_{n \ge 0} T^{-n}(A \setminus A_{ret}).$$

(S8.3) Let (X, \mathcal{B}, μ, T) be a MPS. If $A \in \mathcal{B}$ is such that $\mu(A) > 0$, then there exists $1 \le N \le \Phi$ such that

$$\mu(A \cap T^{-N}(A)) > 0,$$

where $\Phi = \left\lceil \frac{1}{\mu(A)} \right\rceil$.

Proof. Assume that $\mu(A \cap T^{-i}(A)) = 0$ for all $i = 1, ..., \Phi$. Then for all $m > n \in \{0, ..., \Phi\}$, if $1 \le k := m - n \le \Phi$, we have that

$$\mu(T^{-n}(A) \cap T^{-m}(A)) = \mu(T^{-n}(A \cap T^{-k}(A)))$$

= $\mu(A \cap T^{-k}(A))$, as T is measure preserving
= 0.

It follows that

$$1 = \mu(X) \geq \mu\left(\bigcup_{i=0}^{\Phi} T^{-i}(A)\right) = \sum_{i=0}^{\Phi} \mu\left(T^{-i}(A)\right) \text{ by C.4.5.(iv)}$$
$$= \sum_{i=0}^{\Phi} \mu(A), \text{ as } T \text{ is measure preserving}$$
$$= \mu(A) \cdot (\Phi + 1) > 1, \text{ as } \Phi = \left\lceil \frac{1}{\mu(A)} \right\rceil > \frac{1}{\mu(A)}.$$

We have got thus a contradiction.