SNSB

Summer Term 2013

Ergodic Theory and Additive
Combinatorics

Laurenţiu Leuştean

Seminar 8

(S8.1)
(i) $\mathcal{S}=\mathcal{C} \cup\{\emptyset\}$ is a semialgebra on $W^{\mathbb{Z}}$.
(ii) $\mathcal{B}=\sigma(\mathcal{S})=\sigma\left(\mathcal{C}_{e}\right)$.
(iii) \mathcal{B} coincides with the Borel σ-algebra on $W^{\mathbb{Z}}$.

Proof. (i) We have that $\emptyset \in \mathcal{S}$ and that \mathcal{S} is closed under finite intersections as an immediate consequence of Lemma 1.2.8.(ii). Furthermore,

$$
W^{\mathbb{Z}} \backslash C_{n_{1}, \ldots, n_{t}}^{w_{i_{1}}, \ldots, w_{i_{t}}}=\bigcup_{u_{1} \neq w_{i_{1}}} C_{n_{1}}^{u_{1}} \cup \bigcup_{u_{2} \neq w_{i_{2}}} C_{n_{1}, n_{2}}^{w_{i}, u_{2}} \cup \ldots \cup \bigcup_{u_{t} \neq w_{i_{t}}} C_{n_{1}, \ldots, n_{t-1}, n_{t}}^{w_{i_{1}}, \ldots, w_{i_{t} 1}, u_{t}}
$$

is a finite union of pairwise disjoint cylinders.
(ii) \mathcal{B} is the σ-algebra generated by the set \mathcal{R} of measurable rectangles. By (3.9), we have that $\mathcal{C}_{e} \subseteq \mathcal{R} \subseteq \mathcal{A}\left(\mathcal{C}_{e}\right)$, hence $\sigma\left(\mathcal{C}_{e}\right) \subseteq \mathcal{B}=\sigma(\mathcal{R}) \subseteq \sigma\left(\mathcal{A}\left(\mathcal{C}_{e}\right)\right)=\sigma\left(\mathcal{C}_{e}\right)$. Thus, $\mathcal{B}=\sigma\left(\mathcal{C}_{e}\right)$. Since $\mathcal{C}_{e} \subseteq \mathcal{S} \subseteq \mathcal{R}$, we also get that $\sigma(\mathcal{S})=\mathcal{B}$.
(iii) Let $\mathcal{B}\left(W^{\mathbb{Z}}\right)$ be the Borel σ-algebra on $W^{\mathbb{Z}}$. We have to prove that $\mathcal{B}=\mathcal{B}\left(W^{\mathbb{Z}}\right)$.
" \subseteq " follows from the fact that the elementary cylinders are open sets in $W^{\mathbb{Z}}$.
$" \supseteq$ " The set \mathcal{C} of cylinders is countable, since W is finite. Since \mathcal{C} is a basis for the product topology on $W^{\mathbb{Z}}$, any open set U of $W^{\mathbb{Z}}$ is a union of sets in \mathcal{C}, hence U is an at most countable union of sets in \mathcal{C}. Thus, any open set is in $\sigma(\mathcal{C})=\sigma(\mathcal{S})=\mathcal{B}$.
(S8.2) Let $A \in \mathcal{B}$.
(i) $A \backslash A_{\text {ret }}$ is wandering.
(ii) $A \backslash A_{\text {inf }}=A \cap \bigcup_{n \geq 0} T^{-n}\left(A \backslash A_{\text {ret }}\right)$.

Proof. (i) Remark that for every $n \geq 0, T^{-n}\left(A \backslash A_{r e t}\right)$ consists of all points which are in A at moment n, but then leave A for ever.
(ii)

$$
\begin{aligned}
A \backslash A_{\text {inf }} & =A \backslash \bigcap_{n \geq 1} T^{-n}\left(A^{\star}\right)=A \cap\left(X \backslash \bigcap_{n \geq 1} T^{-n}\left(A^{\star}\right)\right)=A \cap \bigcup_{n \geq 1}\left(X \backslash T^{-n}\left(A^{\star}\right)\right) \\
& =A \cap\left[\left(X \backslash T^{-1}\left(A^{\star}\right)\right) \cup \ldots \cup\left(X \backslash T^{-n}\left(A^{\star}\right)\right) \cup \ldots\right]=A \cap \bigcup_{n \geq 1}^{\infty} C_{n},
\end{aligned}
$$

where $C_{n}:=X \backslash T^{-n}\left(A^{\star}\right)$ for all $n \geq 1$. Remark that $\left(C_{n}\right)$ is an increasing sequence, since $T^{-1}\left(A^{\star}\right)=A^{+} \subseteq A^{\star}$. By defining $D_{0}:=C_{1}$ and $D_{n}:=C_{n+1}-C_{n}$ for all $n \geq 1$, we get that D_{0}, D_{1}, \ldots are disjoint and $\bigcup_{n \geq 1} C_{n}=\bigcup_{n \geq 0} D_{n}$. Using moreover that for all $n \geq 2$,

$$
D_{n}=C_{n+1}-C_{n}=\left(X \backslash T^{-n-1}\left(A^{\star}\right)\right) \backslash\left(X \backslash T^{-n}\left(A^{\star}\right)\right)=T^{-n}\left(A^{\star}\right) \backslash T^{-n-1}\left(A^{\star}\right)
$$

we get that

$$
\begin{aligned}
A \backslash A_{\text {inf }} & =A \cap\left(\left(X \backslash T^{-1}\left(A^{\star}\right)\right) \cup \bigcup_{n \geq 1}\left(T^{-n}\left(A^{\star}\right) \backslash T^{-n-1}\left(A^{\star}\right)\right)\right) \\
& =\left(A \cap\left(X \backslash A^{+}\right)\right) \cup\left[A \cap \bigcup_{n \geq 1} T^{-n}\left(A^{\star} \backslash T^{-1}\left(A^{\star}\right)\right)\right] \\
& =\left(A \cap\left(X \backslash A^{+}\right)\right) \cup\left[A \cap \bigcup_{n \geq 1} T^{-n}\left(A^{\star} \backslash T^{-1}\left(A^{\star}\right)\right)\right] \\
& =\left(A \backslash A^{+}\right) \cup\left[A \cap \bigcup_{n \geq 1} T^{-n}\left(A^{*} \backslash A^{+}\right)\right] \\
& =\left(A \backslash A_{r e t}\right) \cup\left[A \cap \bigcup_{n \geq 1} T^{-n}\left(A \backslash A_{r e t}\right)\right] \\
& =A \cap \bigcup_{n \geq 0} T^{-n}\left(A \backslash A_{r e t}\right) .
\end{aligned}
$$

(S8.3) Let (X, \mathcal{B}, μ, T) be a MPS. If $A \in \mathcal{B}$ is such that $\mu(A)>0$, then there exists $1 \leq N \leq \Phi$ such that

$$
\mu\left(A \cap T^{-N}(A)\right)>0
$$

where $\Phi=\left\lceil\frac{1}{\mu(A)}\right\rceil$.

Proof. Assume that $\mu\left(A \cap T^{-i}(A)\right)=0$ for all $i=1, \ldots, \Phi$. Then for all $m>n \in$ $\{0, \ldots, \Phi\}$, if $1 \leq k:=m-n \leq \Phi$, we have that

$$
\begin{aligned}
\mu\left(T^{-n}(A) \cap T^{-m}(A)\right) & =\mu\left(T^{-n}\left(A \cap T^{-k}(A)\right)\right) \\
& =\mu\left(A \cap T^{-k}(A)\right), \quad \text { as } T \text { is measure preserving } \\
& =0 .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
1=\mu(X) & \geq \mu\left(\bigcup_{i=0}^{\Phi} T^{-i}(A)\right)=\sum_{i=0}^{\Phi} \mu\left(T^{-i}(A)\right) \quad \text { by C.4.5.(iv) } \\
& =\sum_{i=0}^{\Phi} \mu(A), \quad \text { as } T \text { is measure preserving } \\
& =\mu(A) \cdot(\Phi+1)>1, \quad \text { as } \Phi=\left\lceil\frac{1}{\mu(A)}\right]>\frac{1}{\mu(A)} .
\end{aligned}
$$

We have got thus a contradiction.

